Impact of Adsorbent Weight, Time, and Temperature on Purification Efficiency with Activated Carbon
DOI:
https://doi.org/10.30595/rice.v3i1.208Keywords:
Crude glycerol, adsoprtion, factorial design, activated carbonAbstract
Based on data from the Indonesian Biofuel Producers Association 2022, biodiesel production will reach 10.8 billion liters, producing crude glycerol of 10-20% of the total product volume in the transesterification process. Crude Glycerol is a by-product of making biodiesel with low purity because it still contains impurities such as methanol, free fatty acids, KOH catalysts, and water. These impurity compounds must be removed so that the quality of glycerol increases and has a high selling value. Adsorption is one method that can be used to absorb these impurity compounds. This research aims to determine the effect of adsorbent weight, adsorption time, and temperature on glycerol purity levels. This experimental research uses an exploratory factorial design method to determine the most influential factors. The low level of adsorbent weight used is 9%, while the high level of adsorbent weight is 15%. The low-level adsorption time is 60 minutes and the high level is 90 minutes. The adsorption temperature used is a low level of 40℃ and a high level of 80℃. The research results showed that the weight of the adsorbent was the factor that had the most influence on the purity level of glycerol
References
A. Habibie and W. Sutopo, “A Literature review: Commercialization study of electric motorcycle conversion in Indonesia,” in IOP Conference Series: Materials Science and Engineering, 2020, p. 943.
M. L. Yusrizal, L. P. Afisna, K. E. Kristian, A. Setiawan, Nurhapipah, and S. A. Zahra, “Uji Eksperimen Karakteristik Minyak Jelantah (Cooking Oil) pada Biodiesel,” Jurnal Ilmiah Penalaran dan Penelitian Mahasiswa, vol. 6, no. 1, pp. 53–63, 2022.
M. Ichsan, M. Lockwood, and M. Ramadhani, “National oil companies and fossil fuel subsidy regimes in transition: The case of Indonesia,” Extr. Ind. Soc., vol. 11, 2022, doi: https://doi.org/10.1016/j.exis.2022.101104
N. Sanjel, J. H. Gu, and S. C. Oh, “Transesterification kinetics of waste vegetable oil in supercritical alcohols,” Energies (Basel), vol. 7, no. 4, pp. 2095–2106, 2014.
J. Chen, S. Yan, X. Zhang, R. D. Tyagi, R. Y. Surampalli, and J. R. Valéro, “Chemical and biological conversion of crude glycerol derived from waste cooking oil to biodiesel,” Waste Management, vol. 71, pp. 164–175, Jan. 2018, doi: 10.1016/j.wasman.2017.10.044.
A. Syafiuddin, J. H. Chong, A. Yuniarto, and T. Hadibarata, “The current scenario and challenges of biodiesel production in Asian countries: A review,” Bioresour. Technol. Reports, vol. 12, p. 100608, 2020, doi: https://doi.org/10.1016/j.biteb.2020.100608.
R. Dhabhai, E. Ahmadifeijani, A. K. Dalai, and M. Reaney, “Purification of crude glycerol using a sequential physico-chemical treatment, membrane filtration, and activated charcoal adsorption,” Sep Purif Technol, vol. 168, pp. 101–106, Aug. 2016, doi: 10.1016/j.seppur.2016.05.030
C. E. Demaman Oro, M. Bonato, J. V. Oliveira, M. V. Tres, M. L. Mignoni, and R. M. Dallago, “A new approach for salts removal from crude glycerin coming from industrial biodiesel production unit,” J Environ Chem Eng, vol. 7, no. 1, p. 102883, Feb. 2019, doi: 10.1016/j.jece.2019.102883.
C. Jin et al., “Influence of Glycerol on Methanol Fuel Characteristics and Engine Combustion Performance,” Energies, vol. 15, no. 6585, 2022, doi: https://doi.org/ 10.3390/en15186585.
Y. Yao, Z. Zhang, K. Wang, and Q. Fu, “Effects of Plasticizing on Mechanical and Viscous Characteristics of Poly(vinyl alcohol): A Comparative Study between Glycerol and Diethanolamine,” Macromol. Mater. Eng., vol. 308, no. 10, p. 2300090, 2023, doi: https://doi.org/10.1002/mame.202300090.
I. Aziz, M. N. Aristya, H. Hendrawati, and L. Adhani, “Peningkatan Kualitas Crude Glycerol dengan Proses Adsorpsi Menggunakan Sekam Padi,” Jurnal Kimia Valensi, vol. 4, no. 1, pp. 34–41, May 2018, doi: 10.15408/jkv.v4i1.7498.
S. Nadeak, J. Mentari Hasibuan, L. Widya Naibaho, and M. Suriani Sinaga, “Pemanfaatan Limbah Cangkang Telur Ayam Sebagai Adsorben Pada Pemurnian Gliserol Dengan Metode Asidifikasi Dan Adsorpsi,” Jurnal Teknik Kimia USU, vol. 8, no. 1, pp. 25–31, Sep. 2019, doi: 10.32734/jtk.v8i1.1872.
R. B. Pamungkas, K. Kharimah, and E. Puspawiningtyas, “Activated of Carbon Using Microwave-Assisted Hydrochloric Acid fo Urea Adsorption,” Res. Chem. Eng., vol. 1, no. 1, pp. 28–35, 2022, doi: https://doi.org/10.30595/rice.v1i1.10.
A. Shabrina and T. Las, “Optimasi adsorpsi zeolit alam pada pemurnian gliserol kasar (crude glycerol) hasil samping produksi biodiesel dari minyak goreng bekas,” Jakarta, May 2014.
A. Haris Mulyadi, E. Setianingsih, and Y. R. Hasanah, “Effect of Extraction Parameters (Raw Material Particle Size, Volume of Solvent, and Time) on the Process Yield of Rice Bran Oil,” Research In Chemical Engineering (RiCE), vol. 1, no. 1, pp. 1–6, Mar. 2022, doi: 10.30595/rice.v1i1.3
M. Nadir and M. Marlinda, “Peningkatan Kadar Gliserol Hasil Samping Pembuatan Biodiesel Dengan Metode Adsorpsi Asam Lemak Bebas (Alb) Menggunakan Fly Ash,” Konversi, vol. 2, no. 2, p. 1, Oct. 2013, doi: 10.20527/k.v2i2.69.
R. Manosak, S. Limpattayanate, and M. Hunsom, “Sequential-refining of crude glycerol derived from waste used-oil methyl ester plant via a combined process of chemical and adsorption,” Fuel Processing Technology, vol. 92, no. 1, pp. 92–99, Jan. 2011, doi: 10.1016/j.fuproc.2010.09.002
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Research in Chemical Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.





