Activation of Carbon Using Microwave-Assisted Hydrochloric Acid for Urea Adsorbtion

Authors

  • Regawa Bayu Pamungkas Universitas Muhammadiyah Purwokerto
  • Kiswatul Kharimah Universitas Muhammadiyah Purwokerto
  • Endar Puspawiningtiyas Universitas Muhammadiyah Purwokerto

DOI:

https://doi.org/10.30595/rice.v1i1.10

Keywords:

activated carbon , microwave-assisted, hydrochloric acid, urea adsorption

Abstract

The activation of activated carbon using microwave-assisted hydrochloric acid (HCl) has been carried out. This objective of this study was to investigate the effects of the concentration of HCl (1M to 6 M) and time of microwave irradiation (5 to 25 mins) on the iodine number and urea adsorption. The results showed that the concentration of HCl had a significant effect on the quality of the activated carbon. Activation of carbon using 6 mol/L of HCl resulted the iodine adsorption capacity of 1002 mg/g and urea adsorption of 99 mg/g. Microwave irradition time also has a significant effect on the quality of activated carbon. The best microwave irradiation time showed at 25 minutes that resulted in iodine adsorption capacity of 1112 mg/g and urea adsorption capacity of 97 mg/g.

References

A[1] K. Triyono, “TELAAH MASALAH PUPUK UREA, KEAMANAN PANGAN, KESEHATAN DAN LINGKUNGAN Kharis Triyono I. PENDAHULUAN,” J. Inov. Pertan. Vol. 3, No. 1, 2004 (22- 31 ), vol. 03, pp. 22–31, 2004.

K. Cho and M. R. Hoffmann, “Urea degradation by electrochemically generated reactive chlorine species: Products and reaction pathways,” Environ. Sci. Technol., vol. 48, no. 19, pp. 11504–11511, 2014, doi: 10.1021/es5025405.

P. M. Glibert, J. Harrison, C. Heil, and S. Seitzinger, “Escalating worldwide use of urea - A global change contributing to coastal eutrophication,” Biogeochemistry, vol. 77, no. 3, pp. 441–463, 2006, doi: 10.1007/s10533-005-3070-5.

Y. Chen, H. Chen, Z. Chen, H. Hu, C. Deng, and X. Wang, “The benefits of autotrophic nitrogen removal from high concentration of urea wastewater through a process of urea hydrolysis and partial nitritation in sequencing batch reactor,” J. Environ. Manage., vol. 292, Aug. 2021, doi: 10.1016/j.jenvman.2021.112762.

A. Zaher and N. Shehata, “Recent advances and challenges in management of urea wastewater: A mini review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1046, no. 1, p. 012021, Feb. 2021, doi: 10.1088/1757-899x/1046/1/012021.

M. R. Rahimpour, M. M. Barmaki, and H. R. Mottaghi, “A comparative study for simultaneous removal of urea, ammonia and carbon dioxide from industrial wastewater using a thermal hydrolyser,” Chem. Eng. J., vol. 164, no. 1, pp. 155–167, 2010, doi: 10.1016/j.cej.2010.08.046.

E. Urbańczyk et al., “Electrochemical modification of Ti-13Nb-13Zr alloy surface in phosphate based solutions,” Surf. Coatings Technol., vol. 291, pp. 79–88, Apr. 2016, doi: 10.1016/j.surfcoat.2016.02.025.

X. Zhang et al., “Urea removal in reclaimed water used for ultrapure water production by spent coffee biochar/granular activated carbon activating peroxymonosulfate and peroxydisulfate,” Bioresour. Technol., vol. 343, Jan. 2022, doi: 10.1016/j.biortech.2021.126062.

Q. Yang et al., “Photolysis of N-chlorourea and its effect on urea removal in a combined pre-chlorination and UV254 process,” J. Hazard. Mater., vol. 411, Jun. 2021, doi: 10.1016/j.jhazmat.2021.125111.

A. N. Chermahini, A. Teimouri, and H. Farrokhpour, “Theoretical studies of urea adsorption on single wall boron-nitride nanotubes,” Appl. Surf. Sci., vol. 320, pp. 231–236, Nov. 2014, doi: 10.1016/j.apsusc.2014.09.066.

C. H. Ooi, W. K. Cheah, Y. L. Sim, S. Y. Pung, and F. Y. Yeoh, “Conversion and characterization of activated carbon fiber derived from palm empty fruit bunch waste and its kinetic study on urea adsorption,” J. Environ. Manage., vol. 197, pp. 199–205, Jul. 2017, doi: 10.1016/j.jenvman.2017.03.083.

H. M. A. El-Lateef, M. A. Al-Omair, A. H. Touny, and M. M. Saleh, “Enhanced adsorption and removal of urea from aqueous solutions using eco-friendly iron phosphate nanoparticles,” J. Environ. Chem. Eng., vol. 7, no. 1, Feb. 2019, doi: 10.1016/j.jece.2019.102939.

T. Kameda, K. Horikoshi, S. Kumagai, Y. Saito, and T. Yoshioka, “Adsorption of urea, creatinine, and uric acid onto spherical activated carbon,” Sep. Purif. Technol., vol. 237, Apr. 2020, doi: 10.1016/j.seppur.2019.116367.

G. G. Stavropoulos, P. Samaras, and G. P. Sakellaropoulos, “Effect of activated carbons modification on porosity, surface structure and phenol adsorption,” J. Hazard. Mater., vol. 151, no. 2–3, pp. 414–421, 2008, doi: 10.1016/j.jhazmat.2007.06.005.

M. Gayathiri, T. Pulingam, K. T. Lee, and K. Sudesh, “Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism,” Chemosphere, vol. 294. Elsevier Ltd, May 2022, doi: 10.1016/j.chemosphere.2022.133764.

S. Z. Naji and C. T. Tye, “A review of the synthesis of activated carbon for biodiesel production: Precursor, preparation, and modification,” Energy Convers. Manag. X, vol. 13, Jan. 2022, doi: 10.1016/j.ecmx.2021.100152.

D. Xin-hui, C. Srinivasakannan, P. Jin-hui, Z. Li-bo, and Z. Zheng-yong, “Comparison of activated carbon prepared from Jatropha hull by conventional heating and microwave heating,” Biomass and Bioenergy, vol. 35, no. 9, pp. 3920–3926, 2011, doi: 10.1016/j.biombioe.2011.06.010.

Z. Zhang et al., “Comparison between microwave and conventional thermal reactivations of spent activated carbon generated from vinyl acetate synthesis,” Desalination, vol. 249, no. 1, pp. 247–252, 2009, doi: 10.1016/j.desal.2009.03.008.

Q. S. Liu, T. Zheng, N. Li, P. Wang, and G. Abulikemu, “Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue,” Appl. Surf. Sci., vol. 256, no. 10, pp. 3309–3315, 2010, doi: 10.1016/j.apsusc.2009.12.025.

L. Zhang, M. Mi, B. Li, and Y. Dong, “Modification of activated carbon by means of microwave heating and its effects on the pore texture and surface chemistry,” Res. J. Appl. Sci. Eng. Technol., vol. 5, no. 5, pp. 1791–1795, 2013.

J. Kazmierczak-razna, B. Gralak-podemska, P. Nowicki, and R. Pietrzak, “The use of microwave radiation for obtaining activated carbons from sawdust and their potential application in removal of NO 2 and H 2 S,” Chem. Eng. J., vol. 269, pp. 352–358, 2015, doi: 10.1016/j.cej.2015.01.057.

X. Liu, Y. Han, Y. Cheng, and G. Xu, “Microwave-assisted ammonia modification of activated carbon for effective removal of phenol from wastewater: DFT and experiment study,” Appl. Surf. Sci., vol. 518, no. November 2019, 2020, doi: 10.1016/j.apsusc.2020.146258.

M. Selvam S and B. Paramasivan, “Microwave assisted carbonization and activation of biochar for energy-environment nexus: A review,” Chemosphere, vol. 286, no. July 2021, 2022, doi: 10.1016/j.chemosphere.2021.131631.

K. Y. Foo and B. H. Hameed, “Bioresource Technology Microwave-assisted regeneration of activated carbon,” Bioresour. Technol., vol. 119, pp. 234–240, 2012.

W. Ao et al., “Microwave assisted preparation of activated carbon from biomass: A review,” Renew. Sustain. Energy Rev., vol. 92, no. April, pp. 958–979, 2018, doi: 10.1016/j.rser.2018.04.051.

G. L. Dotto, J. M. Cunha, C. O. Calgaro, E. H. Tanabe, and D. A. Bertuol, “Surface modification of chitin using ultrasound-assisted and supercritical CO 2 technologies for cobalt adsorption,” J. Hazard. Mater., vol. 295, pp. 29–36, 2015, doi: 10.1016/j.jhazmat.2015.04.009.

D. Ewis and B. H. Hameed, “A review on microwave-assisted synthesis of adsorbents and its application in the removal of water pollutants,” J. Water Process Eng., vol. 41, no. March, 2021, doi: 10.1016/j.jwpe.2021.102006.

Y. Zhang, S. Fan, T. Liu, W. Fu, and B. Li, “A review of biochar prepared by microwave-assisted pyrolysis of organic wastes,” Sustain. Energy Technol. Assessments, vol. 50, no. January 2021, 2022, doi: 10.1016/j.seta.2021.101873.

M. R. M. Adib et al., “Effect of Phosphoric Acid Concentration on the Characteristics of Sugarcane Bagasse Activated Carbon,” IOP Conf. Ser. Mater. Sci. Eng., vol. 136, no. 1, 2016, doi: 10.1088/1757-899X/136/1/012061.

S. M. Yakout and G. Sharaf El-Deen, “Characterization of activated carbon prepared by phosphoric acid activation of olive stones,” Arab. J. Chem., vol. 9, pp. S1155–S1162, 2016, doi: 10.1016/j.arabjc.2011.12.002.

D. Bergna, T. Varila, H. Romar, and U. Lassi, “Activated carbon from hydrolysis lignin: Effect of activation method on carbon properties,” Biomass and Bioenergy, vol. 159, p. 106387, Apr. 2022, doi: 10.1016/j.biombioe.2022.106387.

A. Sirimuangjinda, D. Atong, and C. Pechyen, “Comparison on pore development of activated carbon produced from scrap tire by hydrochloric acid and sulfuric acid,” in Advanced Materials Research, 2013, vol. 626, pp. 706–710, doi: 10.4028/www.scientific.net/AMR.626.706.

Downloads

Published

2022-04-06

How to Cite

Pamungkas, R. B., Kharimah, K. ., & Puspawiningtiyas, E. (2022). Activation of Carbon Using Microwave-Assisted Hydrochloric Acid for Urea Adsorbtion . Research in Chemical Engineering, 1(1), 28–35. https://doi.org/10.30595/rice.v1i1.10