Review on Tannic Acid: Potensial Sources, Isolation Methods, Aplication and Bibliometric Analysis

Authors

  • Farikha Maharani Department of Chemical Engineering, Faculty of Engineering, Universitas Wahid Hasyim, Semarang, Indonesia
  • Indah Hartati Department of Chemical Engineering, Faculty of Engineering, Universitas Wahid Hasyim, Semarang, Indonesia (Primary contact: hartatiprasetyo@gmail.com)
  • Vita Paramita Department of Industrial Chemical Engineering, Vocational School of Diponegoro University, Semarang, Indonesia

DOI:

https://doi.org/10.30595/rice.v1i2.33

Keywords:

tannic acid, application, sources, pharmacological activites, bibliometric

Abstract

Tannic acid is the simplest form of astringent hydrolysable tannin in which naturally occurring in practically all aerial plant tissues and regarded as the most famous tanning material. Tannic acid having various types of pharmacological activities including anti-viral, anti-cancer, anti-oxidant, anti-microbial, anti-helminthic, anti- haemorrhoids, and anti-diarrhea. Tannic acid can be isolated from various parts of herbaceous and woody plants via different methods such as maceration, soxhletation, micro-channeling and solvent distillation. Tannic acid also found other prospective use in numerous fields such as in textile, leather, corrosion prevention and in rubber based epoxy resin. Bibliometric analysis shows research on tannic acid application trend is move towards the application of tannic in hydrogel formulations and incorporation.

References

W. Yan, M. Shi, C. Dong, L. Liu, and C. Gao, “Applications of tannic acid in membrane technologies: A review,” Adv. Colloid Interface Sci., vol. 284, no. 229, p. 102267, 2020, doi: 10.1016/j.cis.2020.102267.

P. L. de Hoyos-Martínez, J. Merle, J. Labidi, and F. Charrier – El Bouhtoury, “Tannins extraction: A key point for their valorization and cleaner production,” J. Clean. Prod., vol. 206, pp. 1138–1155, 2019, doi: 10.1016/j.jclepro.2018.09.243.

A. K. Das, M. N. Islam, M. O. Faruk, M. Ashaduzzaman, and R. Dungani, “Review on tannins: Extraction processes, applications and possibilities,” South African J. Bot., vol. 135, pp. 58–70, 2020, doi: 10.1016/j.sajb.2020.08.008.

S. M. Burkinshaw and B. Bahojb-Allafan, “The development of a metal-free, tannic acid-based aftertreatment for nylon 6,6 dyed with acid dyes-part 1: Initial studies,” Dye. Pigment., vol. 58, no. 3, pp. 205–218, 2003, doi: 10.1016/S0143-7208(03)00046-9.

A. Baldwin and B. W. Booth, “Biomedical applications of tannic acid,” J. Biomater. Appl., vol. 36, no. 8, pp. 1503–1523, 2022, doi: 10.1177/08853282211058099.

L. Costadinnova, M. Hristova, T. Kolusheva, and N. Stoilova, “Conductometric study of the acidity properties of tannic acid (Chinese Tannin),” J. Univ. Chem. Technol. Metall., vol. 47, no. 3, pp. 289–296, 2012.

D. Santos, V. Hagemann Cauduro, W. Wohlmann, C. A. Bizzi, P. A. Mello, and E. M. M. Flores, “Ultrasound-assisted conversion of tannic acid to gallic acid as a strategy to obtain value-added products,” Ultrason. Sonochem., vol. 72, p. 105442, 2021, doi: 10.1016/j.ultsonch.2020.105442.

F. Yıldırım, Z. Orhan, M. Taşkın, U. Incekara, M. Biber, and Aydoğan, “Photo-sensor characteristics of tannic acid (C76H52O46)/n-Si hybrid bio-photodiode for visible and UV lights detection,” Opt. Laser Technol., vol. 153, no. September, 2022, doi: 10.1016/j.optlastec.2022.108194.

C. A.J, “Tannic Acid in Hystology: An Historical Perspective,” Stain Technol., vol. 60, no. 4, 1985.

J. Z. Krezanoski, “Tannic Acid: Chemistry, Analysis, and Toxicology,” no. October, pp. 655–657, 1966.

Q. Luo, S. Zeng, Y. Shu, Z. Fu, H. Zhao, and S. Su, “A novel green process for tannic acid hydrolysis using an internally sulfonated hollow polystyrene sphere as catalyst,” RSC Adv., vol. 8, no. 31, pp. 17151–17158, 2018, doi: 10.1039/c8ra02472c.

J. A. Curiel, L. Betancor, B. De Las Rivas, R. Muñoz, J. M. Guisan, and G. Fernández-Lorente, “Hydrolysis of tannic acid catalyzed by immobilized-stabilized derivatives of tannase from lactobacillus plantarum,” J. Agric. Food Chem., vol. 58, no. 10, pp. 6403–6409, 2010, doi: 10.1021/jf9044167.

S. Kim, J. Chung, S. H. Lee, J. H. Yoon, D. H. Kweon, and W. J. Chung, “Tannic acid-functionalized HEPA filter materials for influenza virus capture,” Sci. Rep., vol. 11, no. 1, pp. 1–7, 2021, doi: 10.1038/s41598-020-78929-4.

N. Romero, A. Fernández, and P. Robert, “A polyphenol extract of tara pods (Caesalpinia spinosa) as a potential antioxidant in oils,” Eur. J. Lipid Sci. Technol., vol. 114, no. 8, pp. 951–957, 2012, doi: 10.1002/ejlt.201100304.

F. Pedreschi et al., “Tara pod (Caesalpinia spinosa) extract mitigates neo-contaminant formation in Chilean bread preserving their sensory attributes,” Lwt, vol. 95, no. April, pp. 116–122, 2018, doi: 10.1016/j.lwt.2018.04.086.

F. Z. Saltan, H. Seçilmiş Canbay, A. Üvez, M. Konak, and E. I. Armutak, “Quantitative determination of tannic acid in Quercus species by high performance liquid chromatography,” Fabad J. Pharm. Sci., vol. 44, no. 3, pp. 197–203, 2019.

F. Chamorro et al., “By-Products of Walnut (Juglans regia) as a Source of Bioactive Compounds for the Formulation of Nutraceuticals and Functional Foods,” p. 35, 2022, doi: 10.3390/iecn2022-12396.

M. Yasemi, M. Rahimi, A. Heydarinasab, and M. Ardjmand, “Microfluidic extraction of tannic acid from Quercus leaves,” Iran. J. Chem. Eng., vol. 15, no. 3, pp. 15–33, 2018.

H. S.Mohammed, M. M. I. Al-Zubaidy, and M. B.Al-Aswad, “Inhibitory Effect Of Tannic Acid Extracted From Grape Seeds And Pomegranate Peels On Some Microorganisms,” Mesoppotamia J. Agric, vol. 36, no. 1, 2008.

V. Akbari, R. Jamei, R. Heidari, and A. J. Esfahlan, “Antiradical activity of different parts of Walnut (Juglans regia L.) fruit as a function of genotype,” Food Chem., vol. 135, no. 4, pp. 2404–2410, 2012, doi: 10.1016/j.foodchem.2012.07.030.

S. R. Dhaswadikar et al., “Anti-hemorrhoidal potential of standardized leaf extract of Dolichandrone falcata,” Phytomedicine Plus, vol. 2, no. 1, p. 100172, 2022, doi: 10.1016/j.phyplu.2021.100172.

Y. Tomiki et al., “Effectiveness of endoscopic sclerotherapy with aluminum potassium sulfate and tannic acid as a non-surgical treatment for internal hemorrhoids,” Clin. Endosc., vol. 52, no. 6, pp. 581–587, 2019, doi: 10.5946/ce.2019.017.

Y. Song et al., “Tannic acid extracted from gallnut prevents post-weaning diarrhea and improves intestinal health of weaned piglets,” Anim. Nutr., vol. 7, no. 4, pp. 1078–1086, 2021, doi: 10.1016/j.aninu.2021.04.005.

J. Yu et al., “Tannic acid prevents post-weaning diarrhea by improving intestinal barrier integrity and function in weaned piglets,” J. Anim. Sci. Biotechnol., vol. 11, no. 1, pp. 1–11, 2020, doi: 10.1186/s40104-020-00496-5.

R. A. Youness, R. Kamel, N. A. Elkasabgy, P. Shao, and M. A. Farag, “Recent advances in tannic acid (gallotannin) anticancer activities and drug delivery systems for efficacy improvement; a comprehensive review,” Molecules, vol. 25, no. 6, 2021, doi: 10.3390/molecules26051486.

K. Tikoo, M. S. Sane, and C. Gupta, “Tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity: Potential role of tannins in cancer chemotherapy,” Toxicol. Appl. Pharmacol., vol. 251, no. 3, pp. 191–200, 2011, doi: 10.1016/j.taap.2010.12.012.

I. Gulcin¸, Z. Huyut, M. Elmastas, and H. Y. Aboul-Enein, “Radical scavenging and antioxidant activity of tannic acid,” Arabian, vol. 2, no. 2010, pp. 43–53, 2010, doi: 10.1016/j.arabjc.2009.12.008.

T. T. J. Alawsy and E. F. A. Al-jumaily, “Antioxidant Activity Of Tannic Acid Purified From Sumac Seeds ( Rhus Coriaria L .): Its Scavenging Effect On Free Radical And Active Antioxidant Activity Of Tannic Acid Purified From Sumac Seeds ( Rhus Coriaria L .): Its Scavenging Effect On Free,” no. June, 2020.

D. S. Santos, C. Majolo, W. Bezerra, M. Inês, and B. De Oliveira, “Anthelmintic activity of eugenol , tannin and thymol against Neoechinorhynchus buttnerae,” Arch. Vet. Sci., vol. 26, no. 4, pp. 117–127, 2021.

B. Myint and C. Sing, “Tannic acid as Phytochemical Potentiator for Antibiotic Resistance Adaptation,” APCBEE Procedia, vol. 7, pp. 175–181, 2013, doi: 10.1016/j.apcbee.2013.08.030.

P. Orłowski et al., “Antiviral activity of tannic acid modified silver nanoparticles: Potential to activate immune response in herpes genitalis,” Viruses, vol. 10, no. 10, pp. 1–15, 2018, doi: 10.3390/v10100524.

R. J. Díaz Hidalgo et al., “New insights into iron-gall inks through the use of historically accurate reconstructions,” Herit. Sci., vol. 6, no. 1, pp. 1–15, 2018, doi: 10.1186/s40494-018-0228-8.

C. M. Koerner, D. P. Hopkinson, M. E. Ziomek-Moroz, A. Rodriguez, and F. Xiang, “Environmentally Friendly Tannic Acid Multilayer Coating for Reducing Corrosion of Carbon Steel,” Ind. Eng. Chem. Res., vol. 60, no. 1, pp. 243–250, 2021, doi: 10.1021/acs.iecr.0c02925.

M. Y. Yong, N. M. Sarih, S. Y. Lee, and D. T. C. Ang, “Biobased epoxy film derived from UV-treated epoxidised natural rubber and tannic acid: Impact on film properties and biodegradability,” React. Funct. Polym., vol. 156, no. March, p. 104745, 2020, doi: 10.1016/j.reactfunctpolym.2020.104745.

L. Zhang, J. Ling, and M. Lin, “Artificial intelligence in renewable energy: A comprehensive bibliometric analysis,” Energy Reports, vol. 8, pp. 14072–14088, 2022, doi: 10.1016/j.egyr.2022.10.347.

Y. Zhao et al., “Three-stage microwave extraction of cumin (Cuminum cyminum L.) Seed essential oil with natural deep eutectic solvents,” Ind. Crops Prod., vol. 140, Nov. 2019, doi: 10.1016/j.indcrop.2019.111660.

S. You et al., “Harnessing a biopolymer hydrogel reinforced by copper/tannic acid nanosheets for treating bacteria-infected diabetic wounds,” Mater. Today Adv., vol. 15, p. 100271, 2022, doi: 10.1016/j.mtadv.2022.100271.

Published

2022-12-29

How to Cite

Maharani, F., Hartati, I., & Paramita, V. (2022). Review on Tannic Acid: Potensial Sources, Isolation Methods, Aplication and Bibliometric Analysis. Research in Chemical Engineering (RiCE), 1(2), 46–52. https://doi.org/10.30595/rice.v1i2.33

Issue

Section

Articles